
Effective Scripting in Embedded Devices
Steve Bennett

WorkWare Systems
http://www.workware.net.au/

steveb@workware.net.au
April 2010

ABSTRACT
Scripting can be a valuable tool for embedded systems, but
when is it most appropriate and which scripting languages are
best under what circumstances?

This paper provides answers to these questions, along with case
studies of situations where scripting has been used effectively in
embedded systems.

1. INTRODUCTION
Anyone who has written a short shell script to rename some
files, send a signal to a running process or to extract and
reformat some messages from an apache log file knows that
there are tasks which are far more easily achieved with a
scripting language than with C or C++. Many embedded
systems can benefit from the use of one or more scripting
languages, even those that are relatively slow, have limited
resources or no-MMU.

Creating an application in an embedded system generally
involves accepting more tradeoffs and compromises than
creating an application for a server environment, which is
typically larger, faster and less mobile. As an embedded
developer, it is always necessary to design a total solution to
match the constraints of the environment, such as CPU speed,
memory, flash, reliability, response time requirements, and cost.

Different scripting languages have different strengths and
weaknesses—possibly more so than compiled languages since
most compiled languages strive to be general-purpose
languages, whilst many scripting languages do not. By choosing
an appropriate scripting language and using it in appropriate
ways, building an embedded product can be significantly faster
and simpler.

2. WHAT IS EMBEDDED ANYWAY?
Or, Size Really Does Matter

Our company works with a wide variety of embedded
platforms. Some developers consider a Core 2 Duo with 1GB of
RAM to be “embedded” if it has a microATX form factor with
no screen and keyboard, but that is a far cry from the typical
embedded platform we work with.

Here are some fairly typical embedded platforms.

1. IXP425 533Mhz, 128M RAM, 32M Flash.

2. Coldfire m5282 66Mhz, 16M RAM, 4M Flash, SD card.

3. Microblaze soft CPU 100MHz, 32M RAM, 16M Flash.

For these systems, an application that is 10MB in size is going
to take a fairly substantial amount of RAM and flash. It is
possible that this is acceptable for the primary application—the
raison d'être of the device—but if the application simply
provides an ancillary management function, then likely not.

Consider a common requirement for these embedded devices;
SNMP support. The simplest and most common approach is to
use net-snmp. On Linux, this is a simple matter of compiling
and installing. So what is the size of the installed application?
Here are the sizes from a typical device.

This is 1.3MB just for SNMP support. While this doesn’t seem
like much on a 50GB hard disk, or even a 1GB SD card, it
quickly adds up for a device with only 8MB of flash.

Once a number of other common components are added, the
system has a moderately large footprint even before any
product-specific components have been added.

Larger applications means more RAM, more flash, larger
upgrade images and increased application load times.

In the context of choosing a scripting language for an embedded
system, size is one of the most important factors. The following
graphs gives a rough estimate of the size of several popular
scripting languages as a percentage of space available for
applications on a device with 8M of flash1.

-rwxr-xr-x 1 563688 14:35 /lib/libnetsnmp.so.5

-rwxr-xr-x 1 268380 14:35 /lib/libnetsnmpagent.so.5

-rwxr-xr-x 1 121104 14:35 /lib/libnetsnmphelpers.so.5

-rwxr-xr-x 1 446488 14:35 /lib/libnetsnmpmibs.so.5

-rwxr-xr-x 1 22900 14:35 /bin/snmpd

openssh server 241K

libssl/libcrypto 1177K

bash 513K

iptables 115K

strace 250K

tcpdump 247K

Perl

Python

Tcl 8.4

bash

ash

TinyTcl

lua

Jim

0% 50% 100% 150%

1 Includes only minimal language core. Excludes non-core packages, modules. Assumes 50% compression (e.g. squashfs)

Permission to make digital or hard copies of all or part of this
work is granted without fee provided that copies are reproduced
in full and bear this notice. To copy otherwise requires prior
specific permission.

mailto:steveb@workware.net.au
mailto:steveb@workware.net.au

3. SIZE AND SPEED ARE RELATED
Consider the following simple test:

hello.tcl

 Intel(R) Core(TM)2 Duo CPU @ 2GHz, 2GB RAM

Not too bad. 270ms.

Intel(R) Core(TM)2 Quad CPU @ 2.33GHz, 4GB RAM

Much better. Only 43ms on this faster system.

XScale-IXP42x (v5b) @ 533MHz, 128MB RAM

Now we're getting somewhere! An embedded system can do it
in only 3ms running Jim Tcl.

XScale-IXP42x (v5b) @ 266MHz, 32MB RAM

This slower system managed it in 1ms!

Why is this so? The big systems are running recent versions of
Tcl, 8.4 or 8.5. These have lots of capabilities, but even starting
the interpreter requires loading large binaries and/or shared
libraries and parsing many initialisation files. The embedded
systems are running a tiny version of Tcl. Around 150KB. The
time to load and initialise the interpreter can be significant.

Now it can be argued that there are many reasons why these
results can’t be used directly.

Once the binaries and libraries are in the page cache, they will
run much faster on subsequent invocations.

The time to load from disk is significant compared to running
from flash or ramdisk.

However experience has shown, that in real-world use, a small
application that loads quickly and does small job is far faster
and less resource-intensive than a larger application doing the
same thing. Consider an application written in Perl, Python or
Tcl 8.5 on a 266MHz ARM system with 32MB of RAM. You
should not be surprised if the system runs out of space or the
application runs too slowly.

Small systems can be very fast as long as
they don't have to do much.

It is easy for the overheads to swamp the potential performance
improvement of a more complex system.

For example, there is no doubt that uClibc is generally slower
than glibc for a number of operations. However if your
application comes into existence, has a small amount of work to
do (say, a handful of system calls) and disappears again, you
will likely get better performance with uClibc than glibc.

puts "hello world"

$ time tclsh hello.tcl

real 0m0.270s

$ time tclsh hello.tcl

real 0m0.043s

$ time jimsh hello.tcl

real 0m 0.03s

$ time jimsh hello.tcl

real 0m 0.01s

4. BUILDING A REAL EMBEDDED
PRODUCT

Our company spends a significant amount of time helping
customers build and deploy real products. Almost all of these
products run embedded Linux because of the fantastic leverage
to be gained from a flexible kernel ported (and portable) to
many platforms, and a large set of open source applications that
are available with minimal work.

However, from the point of view of our customers, the most
important aspect of the product is how it is differentiated, both
in hardware and in software. This requires the development of
custom applications for the product.

I often see two different approaches to building applications for
embedded devices.

4.1 The embedded minimalists
These are the developers who will write everything in C from
scratch to make it as small as possible. Every significant
program contains a linked list implementation, a recursive
descent parser, a configuration file parser and a TODO item,
‘should use a hash table here but a fixed size array will do for
now’. No 3rd party libraries are used because the application
contains proprietary IP and all the useful libraries are GPL.
These projects spend lot of time tracking down crashes (I hope
you have an MMU!) in newly written, poorly tested code.

Remember Greenspun’s Tenth Rule [2]:

Any sufficiently complicated C program
contains an ad-hoc, informally-specified, bug-

ridden, slow implementation of half of a
scripting language.

4.2 The application porters
On the other hand are the developers who don't really know
anything about embedded systems. They just need to port their
custom application from a Linux server (or Windows!) to the
embedded system. So they start by trying to compile boost, php,
postgresql and 10,000 lines of custom C++ which resists being
cross compiled, assumes little-endian byte order and accesses
fields in structures at odd byte boundaries. The questions to the
mailing list usually start, ‘I can't seem to get busybox to
compile postgresql. I just get 'elf2flt: ld.real not found’.
Can someone please post the binaries’.

Given the choice, I prefer the former approach to the latter. But
does it need to be so hard? C is a great language for systems
programming. Its ubiquity and maturity means that porting a
well-written C application to an embedded target is often
reasonably straightforward. But some of the core weaknesses
of C are string handling, built-in data structures (i.e. none) and
memory management. Yet, these are exactly the strengths of a
typical scripting language.

Marrying a C application that does what it is good at (bit
twiddling, efficient storage of data) with a scripting language
can provide a best-of-both-worlds scenario.

5. CASE STUDY: AUTOMATED TESTING
Some years ago I worked at a company which produced a line
of embedded Linux firewall-routers. As the number of models
and the feature set of these devices grew, we realised the need
for comprehensive automated system testing.

The initial approach was to have the automated test framework
telnet to a device, set up various configurations and run various
tests. This was scripted from a test system using Expect. While
this generally worked, it was quite cumbersome as everything
had to go through the telnet interface and relied on the limited
set of command line tools available on the device. Even simple
tasks, such as creating configuration files, were difficult through
telnet. Some of these devices even had a shell without
command-line redirection.

When we created the next version of the product, we added
scripting support (TinyTcl) for manipulating the system
configuration, including parsing and writing configuration files.

Suddenly we were able to discard the previous telnet-based
automated testing approach and instead use a dynamic script-
based approach. We did this by creating a tiny test script that
ran under inetd on a certain port. This script accepted scripts as
requests and executed them2 . Since the script system had access
to the configuration system, it was very easy to test different
scenarios by making configuration changes. Also, the full power
of the scripting language was available to execute commands
and parse system logs and other files. We were able to create
higher-level test components, all based on sending (small)
scripts to be executed on the device.

A typical test script might look like:

The remote { ... } command sets some remote variables from
local variables and then sends the script to the device under test
for execution.

This approach allows for almost unlimited capability for the
automated test system, as test scripts have access to the entire
configuration system (via Tcl bindings) and to almost all aspects
of the device (exec commands, signal processes, read and write
files, etc.). The test scripts required far fewer changes as new
features and new models were added. It was generally
straightforward to abstract away differences between models in
the test framework.

source $testlib

use netconf net

test cable {

 # Find a dhcp connection we can use

 array set conn [netconf_find dhcp]

 # Configure it

 remote dev=$conn(dev) devname=$conn(devname) {

 config load -update

 set eth [config ref eth<devname=$dev>]

 set o [config new dhcp interface $eth]

 config set $o type cable

 if {$devname != "eth0"} {

 config set $o fwclass wan

 }

 config set $eth conn $o

 config save

 }

 # Wait for it to come up

 net_wait $conn(intf)

 pass "cable connection on $conn(intf) OK"

}

6. CASE STUDY: WEB FRAMEWORK
At WorkWare we have a product, µWeb, that makes it very easy
to build web interfaces for embedded devices. The framework
provides all the core functionality for implementing an
embedded web application, but each product has its own
requirements for what needs to be configured, what status
should be displayed and the administrative actions that should
be available.

Now a typical split for an embedded device would be between
the web server and a cgi script or program that implements the
web interface.

Here is how this looks:

The web server's job is quite simple. It parses a network
request, sets some environment variables, execs the cgi-bin app
and sends the results back to the client. The cgi script/
application is responsible for most of the work; parsing GET
variables, POST variables (include multipart/form-data),
cookies, managing session-based authentication, system state,
validating input and generating html output.

Using a scripting language for the cgi "script" isn't a very good
idea for performance reasons.

Consider this—we allow a 250ms budget for a web request.
For any typical request that doesn't require generating a large
amount of data, it should take no more than 250ms from when
the user presses a button until the resulting web page is
displayed—even on a slow device.

Implementing all of the cgi script functionality in a scripting
language makes this a difficult (if not impossible) target to meet
on a slower device.

So instead, we split our framework like this:

Here the framework provides protocol support (GET/POST/
cookies/headers), authentication, state management, validation
and error handling and layout, while the application script(s)
provides the customisation.

Below is a more detailed representation of the framework/
application architecture. Certain events (GET request, POST
request, “display this field”) cause callbacks to be invoked, and
those callbacks have access to the framework via a C-based
API.

web server
(C)

cgi app
(script)

web server
(C)

framework
(C)

application
(script)

2 Naturally this script only ran during automated testing to avoid a rather large security hole.

Now here the architecture is extended to support customisation
via a scripting language, Jim Tcl [3], instead of via C-based
callbacks 3 .

In this case, application-specific functionality is implemented as
Tcl scriptlets. These are small scripts that are executed to
provide the functionality for a single request.

When an event occurs, a thin Tcl callback layer causes the
appropriate Tcl scriptlet to be invoked. The scriptlet has access
to the framework API via a Tcl binding. It also has access to all
the Tcl commands.

Here is a typical scriptlet.

Web
Framework

C Framework API

C-based customisation

ca
llb

ac
k

ev
en

ts

Web
Framework

C Framework API

ca
llb

ac
k

ev
en

ts

Tc
l C

al
lb

ac
k

G
lu

e

Jim Tcl

Tcl-based customisation

Tcl Web
Binding

submit -tcl {

 set zones [readfile $zonefile]

 writefile $tzfile $zones([cgi get tz])

 writefile [cgi configdir]/ntpserver \

 [cgi get ntpserver]

 catch {exec killall msntp}

}

All the core framework APIs are bound under a single
command, cgi. It is straightforward to create the C-Tcl binding
and, in general, the Tcl API is easier to use than the C API,
mainly thanks to default arguments, untyped values and built-in
lists and arrays/dictionaries.

With all the heavy lifting done by the framework, meeting
overall performance requirements is generally quite easy. As
mentioned earlier, the creation and initialisation of the
interpreter needs to be very fast, on the order of 10ms or less.

Here is the timing for a typical request4:

Notice that, although the time to create the interpreter and run
the script is 21 times longer than for the C version, the total
response time is not significantly different and the total
response time is well below 250ms where the system may
appear sluggish.

On the other hand, implementing the Tcl version of the script is
far easier than implementing the C version.

6.1 What can an extension script do?
Unlike an extension written in C, a script-based extension does
not have unfettered access to libc and system calls. So what can
a script do?

Firstly, the script must be able to access and manipulate
application objects and state. In the case of µWeb, this means
Tcl access to the C-based extension API.

Secondly, the script uses language features such as lists, string
manipulation and flow-of-control commands.

Thirdly, the script must be able to interact with the system. This
means:

• Reading and writing files (configuration, /proc, /sys, etc.)

• Examining filesystem state (glob, file)

• Running commands (exec)

• Parsing files and command output (regexp, regsub, string)

• Sending signals to processes (kill)

round trip latency 38ms

interpreter creation 4ms

POST scriptlet 17ms

display scriptlet 2ms

framework processing 12ms

Total response 73ms

And similarly when handling a request completely in C:

 round trip latency 38ms

 POST scriptlet 1ms

 display scriptlet 2ms

 framework processing 12ms

Total response 53ms

3 The real framework allows any callback to be implemented in either C or Tcl. This allows omitting the scripting language entirely if
space is at a premium, or allows certain functionality to use C where this makes system interfacing simpler or high performance is
required.

4 Timing tests were performed on an IXP420-based systems @ 266MHz

This third point is a significant difference from a scripting
language embedded in a non-embedded application, where the
script would typically have limited interaction with the system.

7. EMBEDDING JIM TCL
Integrating Jim Tcl into an application is quite straightforward.
Jim Tcl is written in quite portable C and has a minimal
autoconf-based configure system. Configuring, building and
linking Jim won’t be covered here. See [3] for more
information.

7.1 Creating the interpreter
Generally at application startup (but maybe when first needed),
the interpreter needs to be created.

At this point, any application-specific extensions (commands)
are registered, and any application-specific variables or
procedures may also be created.

7.2 C to Tcl
When an event occurs that requires a Tcl script to be invoked,
this may be done in one of two ways:

#include <jim.h>

Jim_Interp *create_tcl_interp(void)

{

 const char *p;

 Jim_Obj *listObj;

 Jim_Interp *interp = Jim_CreateInterp();

 Jim_RegisterCoreCommands(interp);

 Jim_InitStaticExtensions(interp);

 /* Add TCLLIBPATH to JIM_LIBPATH */

 listObj = Jim_GetVariableStr(interp, JIM_LIBPATH,

 JIM_NONE);

 if (Jim_IsShared(listObj))

 listObj = Jim_DuplicateObj(interp, listObj);

 p = getenv("TCLLIBPATH");

 if (p) {

 const char *end;

 do {

 int len = -1;

 /* Allow either ' ' or ':' separators */

 end = strchr(p, ' ') ?: strchr(p, ':');

 if (end) len = end - p;

 Jim_ListAppendElement(interp, listObj,

 Jim_NewStringObj(interp, p, len));

 p = end + 1;

 } while (end);

 }

 /* And standard paths */

 Jim_ListAppendElement(interp, listObj,

 Jim_NewStringObj(interp, "/lib/jim", -1));

 Jim_ListAppendElement(interp, listObj,

 Jim_NewStringObj(interp, "/lib/tcl6", -1));

 Jim_SetVariableStr(interp, JIM_LIBPATH, listObj);

 return interp;

}

/* Evaluate a script. filename and line indicate the
original source location */

int

Jim_Eval_Named(Jim_Interp *interp,const char *script,
const char *filename, int line);

/* Evaluate a script from a file */

int

Jim_EvalFile(Jim_Interp *interp, const char *file);

If the script is embedded in the executable as a string,
Jim_Eval_Named() can be used. If the script exists in the
filesystem (e.g. a configuration file), Jim_EvalFile() can be
used.

Context-specific variables can be set before invoking the script,
and the return code and variable values may be used to retrieve
a result (if required), in addition to any side effects of the script
invoking application-specific APIs through a Tcl binding.

7.3 Tcl to C
In addition to interfacing with the system via standard I/O,
process and signal commands, an extension script will generally
need to access the application objects and commands through
one or more application-specific commands.

Here is a simple example of creating a Tcl command, sleep.

For complex interfaces, Jim supports the creation of
subcommands via a table/callback approach.

8. MAKING THE RIGHT CHOICE
There are many different scripting languages to choose from,
but some choices are better than others for embedded systems.

What are we looking for in an embedded scripting language?

• Written in portable C

• Designed to be embedded, not standalone

• Small

• Fast to start

• Modular, to allow unneeded features to be removed

• BSD or equivalent licence

And as a bonus:

• Identical (or at reasonably similar) to a popular language to
leverage existing skills.

static int Jim_SleepCmd(Jim_Interp *interp,

 int argc, Jim_Obj *const *argv)

{

 if (argc != 2) {

 Jim_WrongNumArgs(interp, 1, argv, "seconds");

 return JIM_ERR;

 }

 else {

 double t;

 int ret = Jim_GetDouble(interp, argv[1], &t);

 if (ret == JIM_OK) {

 if (t < 1)

 usleep(t * 1e6);

 else

 sleep(t);

 }

 return ret;

 }

}

/* to create the command ... */

Jim_CreateCommand(interp, "sleep", Jim_SleepCmd,
NULL, NULL);

8.1 Why Tcl? Why Jim?
Some years ago, I was looking for an embeddable scripting
language that would help with parsing and writing configuration
files in an embedded device.

Consider some of the features of Tcl that make it work well in
this context:

• regular expressions (great for ad-hoc parsing)

• powerful exec command

• associative arrays and lists (for managing data)

• filesystem commands: file, glob, open, close, read, write

Tcl makes it easy to use the power of Tcl from C and the power
of C from Tcl.

I also very much like the fact that Tcl can look like it is not a
language at all.

By defining appropriate procedures, interface, maxsize and
listen, it is possible to make a Tcl script look like a
configuration file.

The same is true for providing an interactive interface.
Procedures can be created for custom commands, providing an
interactive console with essentially no work.

We ended up using TinyTcl[4]. This was a slightly modified
version of Tcl 6.7, the last version of Tcl that was still focussed
on being an embedded language rather than a full application
development language5.

TinyTcl was very small, and yet supported the useful system-
interfacing features described above. We also used this language
very successfully in the early version of µWeb.

However TinyTcl suffered from a number of flaws.

• Scripts are re-parsed on every iteration. This means that
parsing a 2000 line text file in a loop can be noticeably slow.

• No support for 64 bit integers

• No support for strings containing nulls

• Arrays are not first-class objects, which means passing arrays
by name or constantly flattening and unflattening arrays

• No support for functional programming such as lambdas

• Error reporting is poor

• No list expansion operator, {*}

Many of these are issues that Tcl as a whole has struggled with
for many years, and some have only been addressed in the very
latest (as yet unreleased) Tcl 8.6. Some of these required very
significant changes to Tcl and back-porting them to TinyTcl was
not feasible.

interface eth0

maxsize 1024

listen 80 192.168.1.20:8080

Fortunately, Salvatore Sanfilippo was particularly interested in
functional programming with Tcl and created a from-scratch
reimplementation of the Tcl language with a focus on
addressing many of these issues. Going back to the roots of Tcl,
Jim also focussed on embedding as a goal.

I considered using Jim as a replacement for TinyTcl, however it
lacked some significant features from Tcl.

• regular expressions

• exec

• arrays (via the array command)

• compatibility with the Tcl I/O commands

• documentation

Also there were quite a number of bugs exposed by running
existing Tcl scripts.

Over a period of time, I ported various features from TinyTcl
and implemented others directly in Jim, including some features
from Tcl 8.4, 8.5 and 8.6. After some time, we now have a
small, embeddable language with a high level of compatibility
with Tcl and a number of advanced features, including some not
yet even available in Tcl.

This version of Jim is publicly available via git and the web
site: http://jim.workware.net.au/. We are currently working to
merge some or all of these changes into the Jim Tcl mainline.

8.2 Why (not) Lua?
Lua[5] is a very interesting language and has become quite
popular. It was designed to fill the same need as Tcl originally
had. That is, as an embeddable language in a host application.

Taken directly from the Lua web site:

• Lua is a proven, robust language

• Lua is fast

• Lua is portable

• Lua is embeddable

• Lua is powerful (but simple)

• Lua is small

• Lua is free

In addition, Lua can generate byte code that can be executed
directly, which makes it interesting to be able to compile scripts
on a host systems and embed the resulting byte code in the
application.

For our application, µWeb, we decided against Lua for a few
reasons:

• Built-in support for system interfacing is somewhat lacking
(e.g. regular expressions, limited os library).

• The use of metatables and metamethods is interesting, but
can be complex for non-programmers.

• Lua syntax isn’t ideal for configuration files or interactive
use.

5 Interestingly, I believe that the one thing which contributed most to the popularity of Tcl also brought about it's downfall, Tk. At the
time, this was a revolutionary way to create a GUI. Compared to building a GUI with Xt or Motif, a Tcl/Tk-based GUI could be put
together in no time and gradually evolve. However this encouraged people to create full, non-embedded applications with Tcl and send
it on it's current path - where Tcl/Tk is no longer very popular for GUI applications and Tcl has been largely surpassed by languages
such as Python, PHP and perhaps Ruby. On the other hand Tk has lived on as the standard UI for Python.

http://jim.workware.net.au
http://jim.workware.net.au

An early version of µWeb did have support for extensions
written in Lua. It was quite easy to embed and worked well. Lua
is in widespread use in both embedded and non-embedded
application and it continues to grow and evolve.

Lua is probably the most significant alternative to Jim Tcl and is
worth investigating.

8.3 Other Scripting Languages
There are many, many scripting languages available. Some of
these that look interesting and may be suitable for embedded
systems are:

• Pawn (formerly Small)

• Pike

• Nesla

9. LEVERAGING SCRIPTING
Once your embedded system contains a scripting language, it
can make sense to leverage that support for small tasks.

There are a few ways that this can be done.

9.1 Testing support
We have built a product where one device is repurposed as a
test and calibration jig. This device has identical hardware and
software to the production device except it supports a simple
menu system that allows technicians to run calibration and
system tests on attached hardware.

These simple menu systems take user input, read files, write
files, execute commands and display system state. They are also
one-off and are modified as required. They are a perfect fit for a
scripting language.

9.2 Prototyping
During the development of a system, it is often necessary to
quickly bring up small components. For example, in one system
we needed to wait for the hot-plugging of a modem board,
check system configuration, program the FPGA appropriately
and configure appropriate settings based on the current system
status and configuration. It also needed to monitor system
changes and reprogram the FPGA and/or change the system
configuration as appropriate.

This job was too complex for a simple shell script, but it would
have taken quite some time to create a robust C implementation.

Since we already had Tcl on the device, we were able to very
quickly create a Tcl implementation of this component. Aspects
of this implementation changed a number of times during the
development of the product. However, once the system
stabilised, we rewrote this component in C to reduce its
memory footprint.

Vendor/product Version 1.0 Mar 19 12:23:35 EST 2010

 1. Modem 1 [Active]

 2. Modem 2 [Not Installed]

 k. Modulation Control [Running]

 t. Modem Test Signal (0x1B) [None (0)]

 m. Modulation (0x01) [QPSK (0x00)]

 q. Quit

Select option []:

9.3 Replacing complex shell scripts
If a more capable scripting language is not available, it is
possible to end up with a complex and slow shell script, which
may run at a time-critical point, such as system boot.

In one system, the majority of the user configuration was stored
in a text file that looked something like this:

Most parts of the system accessed this configuration through a
C-based library; however, at system start-up, shell scripts
needed access to this configuration. Parsing this configuration
file in a shell script is cumbersome, but writing a small Tcl
script to set environment variables based on the configuration is
trivial.

This script, config-setenv, would produce:

Using this from a shell script is as simple as:

Once you have access to a general-purpose scripting language,
it becomes natural to solve these types of problems with it
rather than resorting to either a complex combination of shell,
awk, sed, tr, cut and sort, or otherwise writing it in C.

10. METHODS OF EMBEDDING SCRIPTS
In order to execute a script in the interpreter, the script source
needs to be available. There are two obvious ways to do this
when a scripting language is used as an extension language.

Load scripts from files at runtime
This simple approach uses some algorithm to determine the
script(s) to load and execute. The algorithm is trivial when cgi
applications are implemented completely in the scripting
language.

This is also the approach that would be used to load scripts as
configuration files.

Embed scripts within the application code
This is the approach we chose for µWeb. Here, each script is
stored in an internal data structure (along with its original
source location), and executed (evaluated) at the appropriate
time.

We chose this approach in µWeb for a number of reasons.

• It allows a web application to be deployed as a single
executable rather than an executable and a large collection of
scripts.

net.ipaddr=10.0.0.200

net.subnet=24

snmp.community=public

snmp.location=Remote Office

config_net_ipaddr=10.0.0.200

config_net_subnet=24

config_snmp_community=public

config_snmp_location="Remote Office"

eval `config-setenv`

ifconfig eth0 $config_net_ipaddr/$config_net_subnet

...etc...

• In µWeb, scripts are more correctly called 'scriptlets'. Each
script is invoked within a certain context and does a small
amount of work. It is simpler for the application developer to
implement a "page" completely in a single source file rather
than storing each script in a separate file.

• As a framework, development of a µWeb application already
requires the user to build and link an executable. If µWeb
were instead a fixed binary, more like a CAD application, it
would make more sense to keep the user's scripts entirely
separate from the application.

This is also the approach you would use for the popular
template approach where HTML pages are interspersed with
scripts.

11. MORE ABOUT JIM TCL
There are some differences between Jim and both TinyTcl and
regular Tcl that are interesting to explore in more detail.

The expand operator {*}
One of the things that has been cumbersome in Tcl for many
years is the inability to seamlessly convert between lists and
procedure arguments. Consider this example:

Now what if we have a list of values? We would like to do
something like:

This doesn’t work too well. The problem is that the list needs to
be expanded to multiple arguments. Typically this is solved in
Tcl as follows:

This is rather ugly. In many ways it is like the impedance
mismatch in C with varargs, where two versions are needed for
every function that takes variable arguments, such as syslog()
and vsyslog(), fprintf() and vfprintf().

So, Tcl 8.5 finally introduced the following list expansion
syntax.

This one change made a huge difference in the usability of Tcl.
Jim added support for the expand operator, {*}, in its earliest
versions.

Return the largest value in the argument list

proc max {args} {

 set max [lindex $args 0]

 foreach v $args {

 if {$v > $max} {

 set max $v

 }

 } return $max

}

. max 5 10 7

10

. set l {1 2 3 4 5}

. max $l

1 2 3 4 5

. eval [concat max $l] 5

. max {*}$l

5

Isomorphic list-dictionary duality
In Tcl, everything is a string—except when it isn't: associative
arrays are not first class objects, so they aren't strings. Tcl 8.5
introduced dictionaries to address this issue; however, arrays are
still not first class objects.

Jim does this much better. Consider:

Note that the list with an even number of elements is
“magically” transformed into an array as needed.

Compare with Tcl:

No namespaces
Once Tcl grew to be used more for application development
rather than as an embedded scripting language, the issue of
name clashes became a problem. Tcl introduced namespaces, so
now we have wonderful things like:

While this is probably necessary for a full application
development language, it just makes typical embedded usage
more verbose.

Accurate runtime error messages with source location
One of the difficulties with a dynamic language is that a script
being evaluated may not even have a source location, so
reporting meaningful runtime error messages can be difficult.

Consider:

When the run-time error occurs, what file and line should be
reported? There is none.

Nonetheless, in many situations it is possible to determine the
source location. Jim carefully tracks a source location for each
token in a script, in order to provide a meaningful error
message.

Consider the following script, test.tcl:

. set a {1 one 2 two 3 three}

. lindex $a 3 two

. puts $a(3) three

% puts $a(3)

can't read "a(3)": variable isn't array

% ::fileutil::magic::filetype filename

set a "puts"

append a " hello extra-arg"

eval $a

proc a {} {

 b one two three

}

proc b {first args} {

 c $first

}

proc c {id} {

 expr {$id + 10}

}

a

First, when run under Tcl:

Now when run under Jim:

Firstly, the error message is far more compact with Jim. Since
Jim is able to accurately report source locations, it doesn't need
to include the context as Tcl does.

Secondly, we can immediately see that the error occurred on
line 8 of test.tcl, whereas we have to go find procedure "c"
and count source lines to find the location in Tcl.

This works especially well when scripts are embedded into C
code. Consider the original source:

If the original source line in test.page can be determined, it is
possible to invoke Jim_EvalNamed(script, "test.page",

line) to inform the interpreter of the original source location.
This allows runtime errors to refer to the original source
location.

This difference between Tcl and Jim has made Jim far easier to
use in µWeb.

can't use non-numeric string as operand of "+"

 while executing

"expr {$id + 10}"

 (procedure "c" line 2) invoked from within

"c $first"

 (procedure "b" line 2) invoked from within

"b one two three"

 (procedure "a" line 2) invoked from within

"a"

 (file "test.tcl" line 11)

test.tcl:8: Runtime Error: expected number but got
"one" in procedure 'a' called at file "test.tcl",
line 11 in procedure 'b' called at file "test.tcl",
line 2 in procedure 'c' called at file "test.tcl",
line 5 at file "test.tcl", line 8

test.page:

....

 submit {

 puts "This is the submit script"

 error here

 }

...

12. POTENTIAL ISSUES
There are some potential issues that should be considered when
choosing and embedding a scripting language.

Stack Space
Many scripting languages make heavy use of the stack. This
can be a problem for a platform with small or fixed size stacks.

Some scripting languages support keeping the language stack
on the heap (sometimes known as NRE, or Non-Recursive
Engine); however, interfacing those languages with C is more
difficult since C wants to keep its state on the stack.

No-MMU Support
Some scripting languages fundamentally assume the existence
of an MMU and fork() (Perl, Python, bash, busybox ash),
while some have various levels of support for no-MMU
systems.

• Jim Tcl provides a blocking-only exec command on no-
MMU systems.

• busybox hush supports many, but not all, Bourne shell
features on no-MMU systems.

Licensing
In an embedded device, the most useful application to embed a
scripting language is likely to be a proprietary one. This means
that a GPL or similar licensed scripting language is out of the
question. Fortunately Tcl (including all versions of standard Tcl,
as well as Jim Tcl) and Lua are available under a BSD-style
licence.

13. CONCLUSION
Most developers appreciate that, when used well, scripting can
provide a dramatic increase in productivity over traditional
compiled languages (Witness the efficiency of Ruby on Rails
compared to Java for certain applications, and the stampede of
developers to it over the last few years.) The same is true for
embedded systems, where a designed-for-embedded scripting
language such as Jim Tcl or Lua can significantly increase
productivity and reduce time to market.

14. ACKNOWLEDGMENTS
Thanks to Salvatore Sanfilippo for creating Jim.

Thanks to John Ousterhout for originally creating Tcl.

15. REFERENCES
[1] Bezroukov, N.. A Slightly Skeptical View on Scripting

Languages. (http://www.softpanorama.org/People/
Scripting_giants/scripting_languages_as_vhll.shtml)

[2] http://en.wikipedia.org/wiki/Greenspun's_Tenth_Rule
[3] http://jim.workware.net.au/
[4] http://tinytcl.sourceforge.net/
[5] http://www.lua.org/

http://www.softpanorama.org/People/Scripting_giants/scripting_languages_as_vhll.shtml
http://www.softpanorama.org/People/Scripting_giants/scripting_languages_as_vhll.shtml
http://www.softpanorama.org/People/Scripting_giants/scripting_languages_as_vhll.shtml
http://www.softpanorama.org/People/Scripting_giants/scripting_languages_as_vhll.shtml
http://www.softpanorama.org/People/Scripting_giants/scripting_languages_as_vhll.shtml
http://www.softpanorama.org/People/Scripting_giants/scripting_languages_as_vhll.shtml
http://www.softpanorama.org/People/Scripting_giants/scripting_languages_as_vhll.shtml
http://www.softpanorama.org/People/Scripting_giants/scripting_languages_as_vhll.shtml
http://en.wikipedia.org/wiki/Greenspun's_Tenth_Rule
http://en.wikipedia.org/wiki/Greenspun's_Tenth_Rule
http://jim.workware.net.au
http://jim.workware.net.au
http://tinytcl.sourceforge.net
http://tinytcl.sourceforge.net
http://www.lua.org
http://www.lua.org

